SOUND & SOUND Sound refers to both what is perceived (a sensation) and to the stimulus that suggests the sensation (a physical phenomenon involving vibrations and energy) **Subjective & Objective** **Psychoacoustics & Acoustics** #### **Examining the Phenomenon of Sound** What is it physically? How do we quantify or measure it? How is it interpreted as sensations? #### longitudinal waves of acoustical energy caused by air compression and rarefaction # Transverse Wave # # Periodic vs Aperiodic #### **PSYCHOACOUSTICS** #### **ACOUSTICS** #### **Graphing a Periodic Sound Wave** #### Sinusoidal Waves Sine wave: a circular/smooth oscillation makes for a good oscillation (frequency) reference pure sine waves are rarely found in nature ### Reading a Periodic Waveform **Distance (sometimes time)** #### **Amplitude** commonly measured in decibels (dB) - logarithmic units #### **Decibels** Decibels (dB) - logarithmic scale Our perception of loudness is not linear, but exponential. Logarithmic perception means that it takes more of a change in the amplitude to produce the same perceived change in loudness as the amplitude increases. #### Amplitude 0 dB - silence 30 dB - whisper. all day long 60 dB - typical conversation. safe. 85 dB - bulldozer. permanent damage after 8 hours. 105 dB - headphones at max volume. chainsaw. hearing damage after 2 hours. 120 dB - the threshold of pain :(#### Amplitude - inverse square law sound intensity is inversely proportional to the square of the distance from the source #### Frequency rate at which the air pressure fluctuates is the frequency of the sound wave Cycles per second, Hertz (Hz) Period & Wavelength Frequency number of cycles per second (f) Period time it takes for one cycle to occur (T) Wavelength distance travelled in one cycle (λ) frequency is inversely related to period f = 1 / T or T = 1 / f wavelength is equal to the speed of sound divided by the frequency $\lambda = v / f$ v = the speed of sound is constant, ~1,125 feet per second (one mile in 5 seconds) ### Frequency LISTEN: Hearing range 20 Hz to 20,000 Hz (0-20Hz frequencies are infrasonic) # Frequency Ranges (fundamental) | | Low (Hz) | High (Hz) | |------------------------|----------|-----------| | Piano | 27.5 | 4186 | | Speech | 80 | 500 | | Standard Digital Audio | 0 | 22,050 | | Human hearing | 20 | 20,000 | | Dog hearing | 20 | 45,000 | | Seal hearing | 1000 | 123,000 | #### Frequency & Pitch #### Frequency The interval between two notes can be measured by the ratio of their frequencies. (just intonation) 1:1 (unison) **2:1** (octave) 3:2 (perfect fifth) 4:3 (perfect fourth) 5:4 (major third) 6:5 (minor third) #### **Equal Loudness Contours** (Fletcher-Munson Curves) | Physical (Acoustics) | Perceptual (psychoacoustics) | Units | |----------------------|-----------------------------------|---------------| | amplitude | loudness | decibels (dB) | | frequency | pitch | hertz (Hz) | | duration | time | seconds (s) | | timbre | quality / tone / spectral content | | #### How do we sense and perceive sound? # **Outer Ear** #### Middle Ear #### **Inner Ear** The inner ear. # **Brains** # auditory cortex ?????